Chaotic diffusion on periodic orbits: the perturbed Arnold cat map.

نویسندگان

  • Itzhack Dana
  • Vladislav E Chernov
چکیده

Chaotic diffusion on periodic orbits (POs) is studied for the perturbed Arnold cat map on a cylinder, in a range of perturbation parameters corresponding to an extended structural-stability regime of the system on the torus. The diffusion coefficient is calculated, using the following PO formulas: (1). the curvature expansion of the Ruelle zeta function; (2). the average of the PO winding-number squared, w(2), weighted by a stability factor; (3). the uniform (nonweighted) average of w(2). The results from formulas (1). and (2). agree very well with those obtained by standard methods, for all the perturbation parameters considered. Formula (3). gives reasonably accurate results for sufficiently small parameters corresponding also to cases of a considerably nonuniform hyperbolicity. This is due to uniformity sum rules satisfied by the PO Lyapunov eigenvalues at fixed w. These sum rules follow from general arguments and are supported by much numerical evidence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scaling invariance of the diffusion coefficient in a family of two-dimensional Hamiltonian mappings.

We consider a family of two-dimensional nonlinear area-preserving mappings that generalize the Chirikov standard map and model a variety of periodically forced systems. The action variable diffuses in increments whose phase is controlled by a negative power of the action and hence effectively uncorrelated for small actions, leading to a chaotic sea in phase space. For larger values of the actio...

متن کامل

Existence of Diffusion Orbits in a priori Unstable Hamiltonian Systems

Under open and dense conditions we show that Arnold diffusion orbits exist in a priori unstable and time-periodic Hamiltonian systems with two degrees of freedom. 1, Introduction and Results By the KAM (Kolmogorov, Arnold and Moser) theory we know that there are many invariant tori in nearly integrable Hamiltonian systems with arbitrary n degrees of freedom. These tori are of n dimension and oc...

متن کامل

Image Encryption Based on Development of Hénon Chaotic Maps using Fractional Fourier Transform

In this paper, we propose an image encryption scheme based on the development of a Hénon chaotic map using fractional Fourier transform (FRFT) which is introduced in order to satisfy the necessity of high secure image transfer. This proposed algorithm combines the main advantages of fractional Fourier transform domain (FRFT), chaotic Arnold cat map encryption algorithm for confusion and our pro...

متن کامل

Orbit bifurcations and spectral statistics

Systems whose phase space is mixed have been conjectured to exhibit quantum spectral correlations that are, in the semiclassical limit, a combination of Poisson and randommatrix, with relative weightings determined by the corresponding measures of regular and chaotic orbits. We here identify an additional component in long-range spectral statistics, associated with periodic orbit bifurcations, ...

متن کامل

On the Ionization of a Keplerian Binary System by Periodic Gravitational Radiation

The gravitational ionization of a Keplerian binary system via normally incident periodic gravitational radiation of definite helicity is discussed. The periodic orbits of the planar tidal equation are investigated on the basis of degenerate continuation theory. The relevance of the KolmogorovArnold-Moser theory to the question of gravitational ionization is elucidated, and it is conjectured tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 67 4 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2003